Singular integral inequalities and natural regularizations
نویسندگان
چکیده
منابع مشابه
Weighted Norm Inequalities for Maximally Modulated Singular Integral Operators
We present a framework that yields a variety of weighted and vector-valued estimates for maximally modulated Calderón-Zygmund singular (and maximal singular) integrals from a single a priori weak type unweighted estimate for the maximal modulations of such operators. We discuss two approaches, one based on the good-λ method of Coifman and Fefferman [CF] and an alternative method employing the s...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملNew integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملSome Nonlinear Weakly Singular Integral Inequalities with Two Variables and Applications
Various singular integral inequalities play an important role in the development of the theory of differential equations, functional differential equations, and integral equations. For example, Henry 1 proposed a linear integral inequality with singular kernel to investigate some qualitative properties for a parabolic differential equation, and Sano and Kunimatsu 2 gave a modified version of He...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2010
ISSN: 1331-4343
DOI: 10.7153/mia-13-23